Решение уравнения Фредгольма первого рода сеточным методом с регуляризацией по А.Н. Тихонову

Рассмотрена линейная некорректная задача для интегрального уравнения Фредгольма первого рода. Для регуляризации используется стабилизатор А.Н. Тихонова. Задача решается сеточным методом, в котором интегральные операторы заменяются простейшими квадратурами, а дифференциальные – простейшими конечными разностями. Экспериментально исследовано влияние параметра регуляризации и сгущения сеток на точность алгоритма. Показано, что наилучшую точность обеспечивает регуляризатор нулевого порядка. Предложенный подход применен к прикладной задаче разрешения двух близко расположенных звезд при известной инструментальной функции телескопа. Показано, что две звезды четко различимы, если расстояние между ними составляет ~0.2 от ширины инструментальной функции, а яркости отличаются на 1-2 звездных величины.

Solution of the Fredholm equation of the first kind by mesh method with Tikhonov regularization

We consider linear ill-posed problem for the Fredholm equation of the first kind. For its regularization, the stabilizer of A.N. Tikhonov is implied. To solve the problem, we use the mesh method in which we replace integral operators by the simplest quadratures and differential ones by the simplest finite differences. We investigate experimentally the influence of the regularization parameter and mesh thickening on the algorithm accuracy. The best performance is provided by the zeroth order regularizer. We explain the reason of this result. We imply the proposed algorithm for an applied problem of recognition of two closely situated stars if the telescope instrument function is known. Also, we show that the stars are clearly distinguished if the distance between them is ~0.2 of the instrumental function width and brightness differs by 1-2 stellar magnitude.

Авторы
Калиткин Н.Н.1 , Белов А.А. 2, 3
Издательство
Федеральное государственное бюджетное учреждение "Российская академия наук"
Номер выпуска
8
Язык
Русский
Страницы
67-88
Статус
Опубликовано
Том
30
Год
2018
Организации
  • 1 Институт прикладной математики им. М.В. Келдыша РАН
  • 2 Московский государственный университет им. М.В. Ломоносова, Физический факультет
  • 3 Российский университет дружбы народов, Факультет физико-математических и естественных наук
Ключевые слова
ill-posed problems; Tikhonov regularization; Mesh method; некорректные задачи; регуляризация по Тихонову; сеточный метод
Цитировать
Поделиться

Другие записи

Васильев А.М.
Азия и Африка сегодня. Федеральное государственное бюджетное учреждение "Российская академия наук". 2018. С. 78-79