# Epihypocurves and epihypocyclic surfaces with arbitrary base curve

If a circle rolls around another motionless circle then a point bind with the rolling circle forms a curve. It is called epicycloid, if a circle is rolling outside the motionless circle; it is called hypocycloid if the circle is rolling inside the motionless circle. The point bind to the rolling circle forms a space curve if the rolling circle has the constant incline to the plane of the motionless circle. The cycloid curve is formed when the circle is rolling along a straight line. The geometry of the curves formed by the point bind to the circle rolling along some base curve is investigated at this study. The geometry of the surfaces formed when the circle there is rolling along some curve and rotates around the tangent to the curve is considered as well. Since when the circle rotates in the normal plane of the base curve, a point rigidly connected to the rotating circle arises the circle, then an epihypocycloidal cyclic surface is formed. The vector equations of the epihypocycloid curve and epihypocycloid cycle surfaces with any base curve are established. The figures of the epihypocycloids with base curves of ellipse and sinus are got on the base of the equations obtained. These figures demonstrate the opportunities of form finding of the surfaces arised by the cycle rolling along different base curves. Unlike epihypocycloidal curves and surfaces with a base circle, the shape of epihypocycloidal curves and surfaces with a base curve other than a circle depends on the initial rolling point of the circle on the base curve.

При качении окружности по другой неподвижной окружности точка, жестко связанная с подвижной окружностью, образует кривую: при качении неподвижной окружности - эпициклоиду, при качении по внутренней стороне неподвижной окружности - гипоциклоиду. При качении окружности при постоянном наклоне к плоскости неподвижной окружности точка, жестко связанная с подвижной окружностью, описывает пространственную кривую. Циклоидой называется кривая, образованная точкой подвижной окружности, катящейся по прямой. Рассматривается геометрия кривых, образуемых точкой, жестко связанной с окружностью, катящейся по произвольной базовой кривой, а также геометрия поверхностей, образованных при одновременном качении окружности по базовой кривой и вращении окружности вокруг касательной к базовой кривой. Так как при вращении окружности в нормальной плоскости базовой кривой точка, жестко связанная с вращающейся окружностью, описывает окружность, то образуется эпигипоциклоидальная циклическая поверхность. Получено векторное уравнение эпигипоциклоид и эпигипоциклоидальных циклических поверхностей с произвольной базовой кривой. На основе векторных уравнений с использованием программного комплекса MathCad построены графики эпигипоциклоидальных кривых с базовым эллипсом и синусоидой. Приведены рисунки эпигипоциклоидальных циклических поверхностей с базовым эллипсом. Они показывают большие возможности формообразования новых видов поверхностей при качении окружности по различным базовым кривым. В отличие от эпигипоциклоидальных кривых и поверхностей с базовой окружностью форма эпигипоциклоидальных кривых и поверхностей с базовой кривой, отличной от окружности, зависит от начальной точки качения окружности на базовой кривой.

Authors
Publisher
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Number of issue
4
Language
English
Pages
404-413
Status
Published
Volume
17
Year
2021
Organizations
• 1 Peoples’ Friendship University of Russia (RUDN University)
Keywords
geometry of the curves; geometry of the surfaces; base curve; epihypocycloids; epihypocycloid cycle surfaces; геометрия кривых; геометрия поверхностей; базовая кривая; эпигипоциклоиды; эпигипоциклоидальные циклические поверхности
19.07.2022
Date of change
19.07.2022
https://repository.rudn.ru/en/records/article/record/91765/
Share

### Other records

#### INFLUENCE OF THE CONCRETE STRENGTH AND THE TYPE OF SUPPORTS ON THE STRESS-STRAIN STATE OF A HYPERBOLIC PARABOLOID SHELL FOOTBRIDGE STRUCTURE

Article
Cajamarca-Zuniga David, Luna Sebastian
Строительная механика инженерных конструкций и сооружений. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Vol. 17. 2021. P. 379-390

#### TRIAL DESIGN OF UMBRELLA TYPE SHELL STRUCTURES

Article
Tupikova E.M., Ershov M.E.
Строительная механика инженерных конструкций и сооружений. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Vol. 17. 2021. P. 414-424