Terahertz (THz) communications systems are expected to become a major enabling technology at the air interface in sixth-generation (6G) cellular systems. However, utilizing extremely narrow antenna radiation patterns at both base station (BS) and user equipment (UE) sides, these systems are affected by not only dynamic blockage but micromobility of UEs. To alleviate the impact of both factors one may utilize the multiconnectivity mechanism allowing for UE to remain connected to several BSs simultaneously and switch between them in case the active connection is lost. In this work, we develop a mathematical framework to characterize the outage probability and spectral efficiency associated with different degrees of multiconnectivity in dynamic blockage and micromobility environment for different beamsearching design options. Our results demonstrate that the presence of UE micromobility may have a positive impact on system performance. Particularly, multiconnectivity allows improving outage and spectral efficiency for small and medium blockers density (up to 0.5 bl./m2) up to that of an ideal system with zero beamsearching times. Furthermore, higher gains are observed for higher degrees of multiconnectivity (e.g., greater than two) as compared to the system with only blockage impairments. For higher blockers densities, however, the reverse effect is observed. IEEE