WELL-POSEDNESS OF A NONLOCAL BOUNDARY VALUE DIFFERENCE ELLIPTIC PROBLEM

The second order of approximation two-step difference scheme for the numerical solution of a nonlocal boundary value problem for the elliptic differential equation-v ''(t)+Av(t)=f(t)(0 <= t <= T),v(0)=v(T)+phi,integral 0Tv(s)ds=psi in an arbitrary Banach space E with the positive operator A is presented. The well-posedness of the difference scheme in Banach spaces is established. In applications, the stability, almost coercive stability and coercive stability estimates in maximum norm in one variable for the solutions of difference schemes for numerical solution of two type elliptic problems are obtained.

Authors
Ashyralyev A. 1, 2, 3 , Hamad A.4, 5
Publisher
EDP Sciences
Number of issue
5
Language
English
Status
Published
Number
507
Volume
14
Year
2019
Organizations
  • 1 Near East Univ, Dept Math, Mersin 10, Lefkosa, Turkey
  • 2 Peoples Friendship Univ Russia RUDN Univ, Ul Miklukho Maklaya 6, Moscow 117198, Russia
  • 3 Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
  • 4 Near East Univ, Dept Math, Mersin 10, Nicosia, Turkey
  • 5 Omar Al Mukhtar Univ, Dept Math, El Beida, Libya
Keywords
Well-posedness; coercive stability; positive operators; difference scheme
Date of creation
10.02.2020
Date of change
10.02.2020
Short link
https://repository.rudn.ru/en/records/article/record/56637/