We study the processes typical for liquids under the influence of powerful impulses of electric current. The maximum temperature and pressure arising in cavitation bubbles at such processes are calculated. To this aim, the main equation of cavitation (Rayleigh Plisset's equation) is solved numerically. The maximum amplitudes of fluctuations of temperature and pressure in a cavity are calculated during a collapse. The analysis of the process shows the existence of the extreme value of pressure above which the cavitation is not observed. Before the limiting pressure being achieved, the cavity increases several times, collapses and comes back to the initial radius, oscillating near it. The increasing of the maximum value of the bubble radius yields, therefore, the increasing of the extreme values of temperature and pressure in a bubble at a collapse. It is established that the maximum amplitude of a bubble during spark cavitation can reach values of the order 200. This fact gives the evidence of large local pressure and temperature in the cavity at the time of a collapse. These temperature and pressure have been calculated in this work. The main conclusion is made that in a liquid metal's phase the intensive cavitation, with local increasing temperature and pressure in a cavity, is possible. Therefore, the process in question can initiate reactions of nuclear fusion in a liquid metal's phase.

Authors

Kravchenko N.Y.
^{1}

Conference proceedings

Publisher

РУДН

Language

English

Pages

243-250

Status

Published

Year

2018

Organizations

^{1}RUDN University

Date of creation

07.11.2019

Date of change

07.11.2019

Share

LIV All-Russia conference on problems in dynamics, particle physics, plasma physics and optoelectronics. Moscow, Russia, 14-17 may 2018 г..
РУДН.
2018.
P. 238-242

LIV All-Russia conference on problems in dynamics, particle physics, plasma physics and optoelectronics. Moscow, Russia, 14-17 may 2018 г..
РУДН.
2018.
P. 251-251