В статье рассматриваются вопросы формообразования циклических поверхностей с плоскостью параллелизма, образуемых движением окружности переменного радиуса, движущейся по двум меридианам базовой поверхности вращения. Получено векторное уравнение подкласса поверхностей. Показано, что на основе отсеков поверхностей конструируются разнообразные оболочки зонтичного типа. Приводятся изображения некоторых видов циклических поверхностей рассматриваемого подкласса, построенных на основе различных базовых поверхностей вращения.
The questions of forming of the cyclic surfaces with plane of parallelism made by the circle of the changed radius moving on two meridians of the base surface of revolution are concern. There received the vector equation of the surfaces. It is shown that on the base of those surfaces there may be constructed varies shells of umbrella type. There shown drawings of some cyclic surfaces and surfaces of umbrella type with different base surfaces of revolution.