The interaction between charged plasma particles and an electromagnetic wave with a stochastic jumping phase is analyzed by numerical simulations. It is demonstrated that, in the course of interaction, the particle energy can increase by more than one order of magnitude. Optimal conditions for efficient interaction of charged plasma particles with a wave having a stochastically jumping phase are determined. According to the simulation results, substantial acceleration of charged plasma particles by a wave with a stochastically jumping phase takes place both at fixed time intervals between phase jumps and when these intervals are random. The influence of the wave parameters, such as the wave amplitude, the characteristic time interval between phase jumps, and the characteristic magnitude of these jumps, on the acceleration dynamics is analyzed. © 2012 Pleiades Publishing, Ltd.