СИМВОЛЬНЫЕ ИССЛЕДОВАНИЯ УРАВНЕНИЙ МАКСВЕЛЛА В ФОРМАЛИЗМЕ ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ АЛГЕБРЫ

Для описания физических и технических систем авторы используют разные реализации алгебры Клиффорда: спиноры, кватернионы, геометрическую алгебру. Формализм геометрической алгебры является сравнительно новым подходом, ориентированным в первую очередь на инженеров и прикладных исследователей. В целом ряде работ авторы рассмотрели реализацию формализма геометрической алгебры для систем компьютерной алгебры. В данной статье авторы расширяют эллиптическую геометрическую алгебру на гиперболическую пространственно-временную алгебру. В качестве иллюстрации используются разные представления уравнений Максвелла. С помощью системы компьютерной алгебры выполнен переход от вакуумных уравнений Максвелла в представлении пространственно-временной алгебры к уравнениям Максвелла в векторном формализме. Кроме практического применения, авторы хотели бы обратить внимание на дидактическое значение данных исследований.

Different implementations of Clifford algebra: spinors, quaternions, and geometric algebra, are used to describe physical and technical systems. The geometric algebra formalism is a relatively new approach, destined to be used primarily by engineers and applied researchers. In a number of works, the authors examined the implementation of the geometric algebra formalism for computer algebra systems. In this article, the authors extend elliptic geometric algebra to hyperbolic space-time algebra. The results are illustrated by different representations of Maxwell’s equations. Using a computer algebra system, Maxwell’s vacuum equations in the space-time algebra representation are converted to Maxwell’s equations in vector formalism. In addition to practical application, the authors would like to draw attention to the didactic significance of these studies.

Publisher
Федеральное государственное бюджетное учреждение "Российская академия наук"
Number of issue
2
Language
Russian
Pages
66-73
Status
Published
Year
2024
Organizations
  • 1 Российский университет дружбы народов
  • 2 Объединенный институт ядерных исследований
Keywords
geometric algebra; Clifford algebra; computer algebra system SymPy; G-algebra; геометрическая алгебра; алгебра Клиффорда; система компьютерной алгебры SymPy; G-algebra
Share

Other records