Описание спектра водородоподобного атома в квантовой механике с последователь но вероятностной интерпретацией

In the first part of the work, the authors review selected statistical interpretations of nonrelativistic quantum mechanics. Then they discuss a possible version of quantum mechanics admitting a nonnegative quantum distribution function. In this version, the time-independent Schr{ö}dinger equation for a particle in a potential field V(bold{r}) is left[-frac{hbar^{2}}{2m}Delta +introman{d}^{3}{bfrho}, alpha_{0}({bfrho}) V(bold{r}+{bfrho})right] Psi(bold{r})=EPsi(bold{r}), where alpha_{0}({bfrho})geq0. par In the second part of the work, the authors consider this modified Schr{ö}dinger equation in the Coulomb case, i.e., for V(bold{r})=-Ze^{2}/|bold{r}|. On applying Kato's perturbation theory for selfadjoint operators, some estimates for the discrete part of a spectrum of the modified Schr{ö}dinger eigenproblem are provided.

Авторы
Zhidkov E.P. , Zorin A.V.
Редакторы
Szmytkowski Radosław
Издательство
Obʺed. Inst. Yadernykh Issled., Dubna
Язык
Английский, Русский
Статус
Опубликовано
Год
2000
Цитировать
Поделиться

Другие записи

OPTIMALITY CONDITIONS

Монография
Arutyunov Aram V., Dmitruk Andrei V.
Kluwer Academic Publishers, Dordrecht. 2000.