Equilibrium dynamics of the restricted 3-body problem with prolate primaries

In this paper, the equilibrium dynamics of the circular restricted (2+1)-body problem with two elongated main bodies is investigated. More precisely, the influence of the mass parameter and the non-sphericity parameter on the position and stability of the libration points of this characteristic configuration is studied through numerical and semi-analytical methods. In addition, the effect of these two parameters of the system on the fractality of the basins of convergence is also investigated, for this, two quantitative indicators are used: the boundary basin entropy and the uncertainty dimension. It is shown that when the two objects have the same value of the non-sphericity parameter, the appearance of new collinear and non-collinear libration points takes place. Compared to the classical circular restricted three-body problem, our numerical study reveals that when both primaries are prolate, some of the collinear libration points may be stable.

Авторы
Alrebdi H.I.2 , Dubeibe Fredy L.3 , Zotos Euaggelos E. 1, 4
Журнал
Язык
Английский
Страницы
106406
Статус
Опубликовано
Том
48
Год
2023
Организации
  • 1 Российский университет дружбы народов
  • 2 Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
  • 3 Facultad de Ciencias Humanas y de la Educación, Universidad de los Llanos, Villavicencio, Colombia
  • 4 Department of Physics, School of Science, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
Ключевые слова
Restricted three-body problem; Equilibrium points; Stability analysis
Дата создания
09.11.2023
Дата изменения
09.11.2023
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/94414/
Поделиться

Другие записи

Аду Я.Н., Бокерия С.А., Дегтерев Д.А., Мезяев А.Б, Шамаров П.В.
Вестник Российского университета дружбы народов. Серия: Международные отношения. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 23. 2023. С. 415-434