Index of Twisted Elliptic Boundary Value Problems Associated with Isometric Group Actions

Abstract Given an isometric action of a discrete group $$\Gamma$$ on a compact manifold $$M$$ with boundary and a $$\Gamma$$ -invariant elliptic boundary value problem $$\mathcal{D}$$ on $$M$$ , we consider its twisting by projections over the crossed product algebra $$C^{\infty}(M)\rtimes\Gamma$$ . The twisted problem is Fredholm and we compute its index in terms of the equivariant Chern character of the principal symbol of $$\mathcal{D}$$ and a noncommutative Chern character of $$P$$ . In the special case, when $$\mathcal{D}$$ is the Dirichlet problem for the Euler operator, the index is expressed as a linear combination of the Euler characteristics of the fixed point submanifolds of the group action.

Авторы
Издательство
Pleiades Publishing
Номер выпуска
10
Страницы
2635-2646
Статус
Опубликовано
Том
43
Год
2022
Организации
  • 1 Росcийский университет дружбы народов
Ключевые слова
elliptic boundary value problems; index theory; isometric group action
Дата создания
21.04.2023
Дата изменения
21.04.2023
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/93456/
Поделиться

Другие записи