Matrix-multiplicative approach to quasi-birth-and-death processes analysis

Abstract Pure algebraic proofs of some known and some new results on the minimal nonnegative solutions of matrix quadratic equations are given. Then we study linear systems with block tridiagonal matrices . We find a method which generalizes the method based on block triangular factorisation. We show that stationary vector of a Markov process with an irreducible block tridiagonal generator can be expressed as a sum of two matrix-multiplicative terms. In the particular case of Quasi-Birth-and-Death processes the solution is given by a sum of two matrix-geometric terms.

Авторы
Сборник материалов конференции
Издательство
MARCEL DEKKER
Язык
Английский
Страницы
87-106
Статус
Опубликовано
Том
183
Год
1996
Организации
  • 1 Российский университет дружбы народов
Ключевые слова
Mathematics; Statistics
Цитировать
Поделиться

Другие записи