PULSES IN FITZHUGH-NAGUMO SYSTEMS WITH RAPIDLY OSCILLATING COEFFICIENTS

This paper is devoted to pulse solutions in FitzHugh-Nagumo systems that are coupled parabolic equations with rapidly periodically oscillating coefficients. In the limit of vanishing periods, there arises a two-scale FitzHugh-Nagumo system, which qualitatively and quantitatively captures the dynamics of the original system. We prove existence and stability of pulses in the limit system and show their proximity on any finite time interval to pulse-like solutions of the original system.

Авторы
Gurevich P. 1, 2 , Reichelt S.3
Издательство
Society for Industrial and Applied Mathematics Publications
Номер выпуска
2
Язык
Английский
Страницы
833-856
Статус
Опубликовано
Том
16
Год
2018
Организации
  • 1 RUDN Univ, Miklukho Maklaya 6, Moscow 117198, Russia
  • 2 Free Univ Berlin, Inst Math, Arnimallee 3, D-14195 Berlin, Germany
  • 3 Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
Ключевые слова
traveling waves; pulse solutions; FitzHugh-Nagumo system; two-scale convergence; spectral decomposition; semigroups
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/9128/
Поделиться

Другие записи