Cardiac Arrhythmia Disorders Detection with Deep Learning Models

In this paper, the research of computer algorithms for automatic detection of heart rhythm disorders based on the analysis of electrocardiograms have been conducted. A new model of the electrocardiogram classifier is proposed, as an ensemble of a two-dimensional convolutional neural network and a long short-term memory model, which includes an attention layer. Computer experiments conducted on the MIT-BIH Physionet collection of ECG showed its high performance compared to other models of machine and deep learning. Proposed model successfully detected cardiac arrhythmia classes with an accuracy of 99.34%, AUC = 99% and recall = 99%. © 2022, Springer Nature Switzerland AG.

Авторы
Shchetinin E.Y.1 , Sevastianov L.A. 2, 3 , Demidova A.V. 3 , Glushkova A.G.4
Сборник материалов конференции
Издательство
Springer Science and Business Media Deutschland GmbH
Язык
Английский
Страницы
371-384
Статус
Опубликовано
Том
1552 CCIS
Год
2022
Организации
  • 1 Financial University, Government of the Russian Federation 49, Leningradsky Prospect, Moscow, 125993, Russian Federation
  • 2 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
  • 3 Joint Institute for Nuclear Research 6, Joliot-Curie Street, Moscow region, Dubna, 141980, Russian Federation
  • 4 Oxford University, Oxford, United Kingdom
Ключевые слова
Attention module; Cardiac arryhythmia; Cardiovascular diseases; Convolutional neural network; ECG; Long short-term memory; MIT-BIH
Дата создания
06.07.2022
Дата изменения
06.07.2022
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/84238/
Поделиться

Другие записи