Commutators of fractional maximal operator in variable Lebesgue spaces over bounded quasi-metric measure spaces

We study the fractional maximal commutators (Formula presented.) and the commutators (Formula presented.) of the fractional maximal operator with (Formula presented.) in the variable Lebesgue spaces (Formula presented.) over bounded quasi-metric measure spaces. We give necessary and sufficient conditions for the boundedness of the operators (Formula presented.) and (Formula presented.) on the spaces (Formula presented.) when (Formula presented.). Furthermore, we obtain some new characterizations for certain subspaces of (Formula presented.). © 2022 John Wiley & Sons, Ltd.

Авторы
Guliyev V.S. 1, 2 , Samko S.G.3, 4
Издательство
John Wiley and Sons Ltd
Язык
Английский
Статус
Опубликовано
Год
2022
Организации
  • 1 Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan
  • 2 Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 3 Department of Mathematics, Faculty of Science, University of Algarve, Faro, Portugal
  • 4 Kh. Ibragimov Complex Institute of Russian Academy of Science, Grosny, Russian Federation
Ключевые слова
BMO; commutators; fractional maximal function; quasi-metric measure spaces; variable Lebesgue spaces
Дата создания
06.07.2022
Дата изменения
06.07.2022
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/84124/
Поделиться

Другие записи