Extended Jensen’s functional for diamond integral via Green’s function and Hermite polynomial

In this paper, with the help of Green’s function and Hermite interpolating polynomial, an extension of Jensen’s functional for n-convex functions is deduced from Jensen’s inequality involving diamond integrals. Special Hermite conditions, including Taylor two point formula and Lagrange’s interpolation, are also deployed to find the further extensions of Jensen’s functional. This paper also includes discussion on bounds for Grüss inequality, Ostrowski inequality, and Čebyšev functional associated to the newly defined Jensen’s functional. © 2022, The Author(s).

Авторы
Bibi F.1 , Bibi R.2 , Nosheen A.1 , Pečarić J. 3
Издательство
Springer International Publishing
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
50
Том
2022
Год
2022
Организации
  • 1 Department of Mathematics, University of Sargodha, Sargodha, Pakistan
  • 2 Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan
  • 3 People’s Friendship University (RUDN) of Russia, Miklukho-Maklay str. 6, Moscow, 117198, Russian Federation
Ключевые слова
Diamond integrals; Green’s function; Hermite polynomial; Jensen’s inequality; Time scales
Цитировать
Поделиться

Другие записи