In this study, deep learning approach was utilized for fatigue behavior prediction, analysis, and optimization of the coated AISI 1045 mild carbon steel with galvanization, hardened chromium, and nickel materials with different thicknesses of 13 and 19 µm were used for coatings and afterward fatigue behavior of related specimens were achieved via rotating bending fatigue test. Experimental results revealed fatigue life improvement up to 60% after applying galvanization coat on untreated material. Obtained experimental data were used for developing a Deep Neural Network (DNN) modelling and accuracy of more than 99%.was achieved. Predicted results have a fine agreement with experiments. In addition, parametric analysis was carried out for optimization which indicated that coating thickness of 10–15 µm had the highest effects on fatigue life improvement. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.