Inequalities for fractional Riemann–Liouville integrals of certain class of convex functions

Fractional calculus operators play a very important role in generalizing concepts of calculus used in diverse fields of science. In this paper, we use Riemann–Liouville fractional integrals to establish generalized identities, which are further applied to obtain midpoint and trapezoidal inequalities for convex function with respect to a strictly monotone function. These inequalities reproduce midpoint and trapezoidal inequalities for convex, harmonic convex, p-convex, and geometrically convex functions. Also, some new inequalities can be generated via specific strictly monotone functions. © 2022, The Author(s).

Авторы
Farid G.1 , Pec̆arić J. 2 , Nonlaopon K.3
Издательство
Springer Science and Business Media Deutschland GmbH
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
8
Том
2022
Год
2022
Организации
  • 1 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
  • 2 RUDN University, Miklukho-Maklaya str. 6, Moscow, 117198, Russian Federation
  • 3 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
Ключевые слова
Convex function; Error bounds; Hadamard inequality; Riemann–Liouville fractional integrals
Цитировать
Поделиться

Другие записи