The history of wildfires along a latitudinal transect from forest–tundra to middle taiga in North-Central Siberia was reconstructed for the period from 1985 to 2020 using Landsat imagery. The transect passed through four key regions (75 × 75 km2) with different climate and landscape conditions that allowed us to evaluate regional wildfire dynamics as well as estimate differences in post-fire forest recovery. The Level-2A Landsat data (TM, ETM+, and OLI) were used to derive: (i) burned area (BA) locations, (ii) timing of wildfire occurrence (date, month, or season), (iii) fire severity, and (iv) trends in post-fire vegetation recovery. We used pre-selected and pre-processed scenes suitable for BA mapping taken within four consecutive time intervals covering the entire period of data analysis (1985–2020). Pre- and post-fire dynamics of forest vegetation were described using spectral indices, i.e., NBR and NDVI. We found that during the last three decades, the maximum BA occurred in the southernmost Vanavara region where ≈58% of the area burned. Total BA gradually decreased to the northwest with a minimum in the Igarka region (≈1%). Nearly half of these BAs appeared between summer 2013 and autumn 2020 due to higher frequency of hot and dry weather. The most severe wildfires were detected in the most northeastern Tura region. Analysis of NDVI and NBR dynamics showed that the mean period of post-fire vegetation recovery ranged between 20 and 25 years. The time of vegetation recovery at BAs with repeat wildfires and high severity was significantly longer.