On Hardy type inequalities in grand Lebesgue spaces L p) for 0 < p ≤ 1

In this paper, we prove the boundedness of Hardy operator for monotone functions in grand Lebesgue spaces (Formula presented.) In particular, we prove similar results for the Hardy operator in weighted Lebesgue spaces. Also, it is proved that the grand Lebesgue space (Formula presented.) is a quasi-Banach function space. Finally, we establish necessary and sufficient conditions for the boundedness of some integral operator in weighted quasi-Banach Lebesgue spaces.

Авторы
Bandaliyev R.A. 1, 2 , Safarova K.H.1
Издательство
Taylor and Francis Ltd.
Язык
Английский
Статус
Опубликовано
Год
2021
Организации
  • 1 Institute of Mathematics and Mechanics of NAS of Azerbaijan
  • 2 Peoples' Friendship University of Russia
Ключевые слова
grand Lebesgue spaces; Hardy operator; monotone functions; Weighted Lebesgue spaces
Дата создания
16.12.2021
Дата изменения
16.12.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/80396/
Поделиться

Другие записи