Алгоритм численного решения задачи Стефана и его применение к расчетам температуры вольфрама при импульсном воздействии

В работе представлено численное решение задачи Стефана для расчета температуры образца вольфрама, нагреваемого лазерным импульсом. Математическое моделирование проводитсядля анализа натурных экспериментов, где наблюдается мгновенный нагрев пластинки до 9000 K за счет воздействия на её поверхность теплового потока и последующее охлаждение. Задача характеризуется нелинейными коэффициентами и граничными условиями. Важную роль играет учет испарения металла с нагреваемой поверхности. Для реализации выбран метод сплошного счета с использованием формулировки уравнения теплопроводности в единообразной форме во всей области с применением дельта-функции Дирака, основанный на подходе А. А. Самарского. Численный метод имеет второй порядок аппроксимации по пространству, интервал сглаживания коэффициентов составляет 5 К. В результате получены распределения температуры на поверхности и в поперечном сечении образца в процессе охлаждения.

In this paper, we present the numerical solution of the Stefan problem to calculate the temperature of the tungsten sample heated by the laser pulse. Mathematical modeling is carried out to analyze field experiments, where an instantaneous heating of the plate to 9000 K is observed due to the effect of a heat flow on its surface and subsequent cooling. The problem is characterized by nonlinear coefficients and boundary conditions. An important role is played by the evaporation of the metal from the heated surface. Basing on Samarskii’s approach, we choose to implement the method of continuous counting considering the heat conductivity equation in a uniform form in the entire domain using the Dirac delta function. The numerical method has the second order of approximation with respect to space, the interval of smoothing of the coefficients is 5 K. As a result, we obtain the temperature distributions on the surface and in the cross section of the sample during cooling.

Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
3
Язык
Русский
Страницы
442-454
Статус
Опубликовано
Том
67
Год
2021
Организации
  • 1 Российский университет дружбы народов
Дата создания
16.12.2021
Дата изменения
16.12.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/80119/
Поделиться

Другие записи

Колесникова И.А.
Современная математика. Фундаментальные направления. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 67. 2021. С. 316-323
Бахтигареева Э.Г., Гольдман М.Л.
Современная математика. Фундаментальные направления. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 67. 2021. С. 455-471