ON FIXED POINTS OF CONTRACTION MAPS ACTING IN (q(1), q(2))-QUASIMETRIC SPACES AND GEOMETRIC PROPERTIES OF THESE SPACES

We study geometric properties of (q(1), q(2))-quasimetric spaces and fixed point theorems in these spaces. In paper [1], a fixed point theorem was obtained for a contraction map acting in a complete (q(1),q(2))-quasimetric space. The graph of the map was assumed to be closed. In this paper, we show that this assumption is essential, i.e. we provide an example of a complete quasimetric space and a contraction map acting in it whose graph is not closed and which is fixed-point-free. We also describe some geometric properties of such spaces.

Авторы
Sengupta R.
Издательство
Eurasian Mathematical Journal
Номер выпуска
3
Язык
Английский
Страницы
70-76
Статус
Опубликовано
Том
8
Год
2017
Ключевые слова
fixed point; quasimetric space
Цитировать
Поделиться

Другие записи

Smyshlyaev I.A., Gilfanov S.I., Kopylov V.A., Gilmutdinov R.G., Pulin A.A., Korsakov I.N., Gilmutdinova I.R., Petrikina A.P., Eremin P.S., Kruchkova O.V., Abeltsev V.P., Zagorodniy N.V., Zorin V.L., Vasilyev V.S., Pupynin D.Y., Eremin I.I.
Травматология и ортопедия России. VREDEN RUSSIAN RESEARCH INST TRAUMATOLOGY & ORTHOPEDICS. Том 23. 2017. С. 17-31