ON THE DECAY OF VISCOSITY SOLUTIONS TO HAMILTON–JACOBI EQUATIONS WITH ALMOST PERIODIC INITIAL DATA

The Cauchy problem is treated for a multidimensional Hamilton–Jacobi equation with a merely continuous nonstrictly convex Hamiltonian and a Bohr almost periodic initial function. Under the condition that the Hamiltonian is not degenerate in resonant directions (laying in the additive group generated by the spectrum of the initial function), the uniform decay of the viscosity solution to the constant equal to the infimum of the initial function is established. © 2021. All rights reserved.

Авторы
Panov E.Y. 1, 2
Издательство
American Mathematical Society
Номер выпуска
4
Язык
Английский
Страницы
767-779
Статус
Опубликовано
Том
32
Год
2021
Организации
  • 1 Novgorod State University, 41, B. St.-Petersburgskaya str, Veliky Novgorod, 173003, Russian Federation
  • 2 Peoples’ Friendship University of Russia (, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
almost periodic functions; decay property; Hamilton–Jacobi equations; spectrum; viscosity solutions
Цитировать
Поделиться

Другие записи