On Time Fractional Derivatives in Fractional Sobolev Spaces and Applications to Fractional Ordinary Differential Equations

In this article, we formulate two kinds of time fractional derivatives of the Caputo type with order α in fractional Sobolev spaces and prove that they are isomorphisms between the corresponding Sobolev space of order α and the L2 -space. On the basis of such fractional derivatives, we formulate initial value problems for time fractional ordinary differential equations and prove the well-posedness. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Авторы
Yamamoto M. 1, 2, 3
Сборник статей
Издательство
Springer Science and Business Media Deutschland GmbH
Язык
Английский
Страницы
287-308
Статус
Опубликовано
Том
26
Год
2021
Организации
  • 1 Graduate School of Mathematical Scsiences, The University of Tokyo, Tokyo, Komaba, Meguro, 153-8914, Japan
  • 2 Honorary Member of Academy of Romanian Scientists, Ilfov, nr. 3, Bucureşti, Romania
  • 3 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
Fractional Sobolev space; Initial value problem; Time fractional ordinary differential equation; Well-posedness
Дата создания
16.12.2021
Дата изменения
16.12.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/77098/
Поделиться

Другие записи