Thermochemical approaches of oxidizing NO to NO2have been considered as the critical steps governing NOxpurification technologies. However, developing efficient materials with boosted NO oxidation activity and strong SO2resistance at low temperature still remains a significant challenge. This contribution discloses a versatile and scalable methodology for the design of hollow MnO2@CeO2heterostructures for NO oxidation. Due to its hollow core-shell nanostructure with a high density of active oxygen vacancies and improved charge-transfer efficiency induced by the heterojunction interface, the resulting material exhibits remarkable low-temperature catalytic activity in NO oxidation (T50at 196 °C andT92at 275 °C), achieving over 69 °C of temperature reduction in comparison with the commercial Pt/Al2O3catalyst (T50at 275 °C). Remarkably, the SO2tolerance of the hollow core-shell material is greatly enhanced due to the block accessibility of the mesoporous CeO2shell (ECeO2,SO2= −1.78 eV vsEMnO2,SO2= −1.04 eV). This work exemplifies an alternative perspective in the design of high-performance hollow core-shell nanostructured catalysts for atmospheric pollutant purification and industrial thermal catalysis processes. © 2021 American Chemical Society