Geodesic Incompleteness and Partially Covariant Gravity

We study the issue of length renormalization in the context of fully covariant gravity theories as well as non-relativistic ones such as Horava-Lifshitz gravity. The difference in their symmetry groups implies a relation among the lengths of paths in spacetime in the two types of theory. Provided that certain asymptotic conditions hold, this relation allows us to transfer analytic criteria for the standard spacetime length to be finite and the Perelman length to be likewise finite, and therefore formulate conditions for geodesic incompleteness in partially covariant theories. We also discuss implications of this result for the issue of singularities in the context of such theories.

Авторы
Antoniadis I.1, 2 , Cotsakis S. 3, 4
Журнал
Издательство
MDPI AG
Номер выпуска
5
Язык
Английский
Статус
Опубликовано
Номер
126
Том
7
Год
2021
Организации
  • 1 Sorbonne Univ, Lab Phys Theor & Hautes Energies, CNRS, 4 Pl Jussieu, F-75005 Paris, France
  • 2 Katholieke Univ Leuven, Inst Theoret Phys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
  • 3 RUDN Univ, Inst Gravitat & Cosmol, Ul Miklukho Maklaya 6, Moscow 117198, Russia
  • 4 Univ Aegean, Res Lab Geometry Dynam Syst & Cosmol, Karlovassi 83200, Samos, Greece
Ключевые слова
Horava-Lifshitz gravity; geodesic incompleteness; geometric flows
Цитировать
Поделиться

Другие записи