On Hardy type inequalities in grand Lebesgue spaces L p) for 0 < p ≤ 1

In this paper, we prove the boundedness of Hardy operator for monotone functions in grand Lebesgue spaces (Formula presented.) In particular, we prove similar results for the Hardy operator in weighted Lebesgue spaces. Also, it is proved that the grand Lebesgue space (Formula presented.) is a quasi-Banach function space. Finally, we establish necessary and sufficient conditions for the boundedness of some integral operator in weighted quasi-Banach Lebesgue spaces. © 2021 Informa UK Limited, trading as Taylor & Francis Group.

Авторы
Bandaliyev R.A. 1, 2 , Safarova K.H.1
Издательство
Taylor and Francis Ltd.
Язык
Английский
Статус
Опубликовано
Год
2021
Организации
  • 1 Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
  • 2 Peoples' Friendship University of Russia, Moscow, Russian Federation
Ключевые слова
grand Lebesgue spaces; Hardy operator; monotone functions; weighted Lebesgue spaces
Цитировать
Поделиться

Другие записи

Kukushkin M.L., Amelin A.V., Zyryanov S.K., Balyazin V.A., Shirokov V.A., Medvedeva L.A., Akhmadeeva L.R., Kurushina O.V., Kiselev D.V., Abuzarova G.R., Davydov O.S.
Российский журнал боли. Том 19. 2021. С. 60-62