(q-1,q-2)-quasimetric spaces. Covering mappings and coincidence points

We introduce (q1, q2)-quasimetric spaces and investigate their properties.We study covering mappings from one (q1, q2)-quasimetric space to another and obtain sufficient conditions for the existence of coincidence points of two mappings between such spaces provided that one of them is covering and the other satisfies the Lipschitz condition. These results are extended to multi-valued mappings. We prove that the coincidence points are stable under small perturbations of the mappings. © 2018 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.

Авторы
Arutyunov A.V. 1 , Greshnov A.V.2
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
2
Язык
Английский
Страницы
245-272
Статус
Опубликовано
Том
82
Год
2018
Организации
  • 1 Russian University of People's Friendship, Moscow, Moscow State University, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russian Federation
  • 2 Novosibirsk State University, Sobolev Mathematical Institute, Siberian Branch of RAS, Novosibirsk, Russian Federation
Ключевые слова
(q1 q2)-quasimetric; coincidence points; covering Mappings; generalized triangle inequality; multi-valued mappings
Цитировать
Поделиться

Другие записи