On a numerical solution of equations of extremals for a variational problem with constraints

The paper is concerned with the variational problem int_{t_0}^{t_1} L(q,v,t)dt to {rm extr}, q=(q_1, dots, q_n), v=(v_1, dots, v_n), v_i={dot q}_i, subject to the constraints q(t_0)=q^0, q(t_1)=q^1, f_i (q,t)=0, 1 leq i leq m; f_j (q,v,t)=0, m+1 leq j leq r (r leq n). The author points out that the integral manifold related to the classical Euler-Lagrange system for the original problem is usually stable but not asymptotically stable. In this connection he presents a modified system of necessary optimality conditions whose integral manifold is asymptotically stable. The stability of Euler and Runge-Kutta methods when applied to the modified optimality system is also established.

Авторы
Mukharlyamov R.G.
Редакторы
Kokurin Mihail Yu.
Издательство
Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет"
Номер выпуска
no.~4
Язык
Английский, Русский
Статус
Опубликовано
Дата создания
19.05.2021
Дата изменения
19.05.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/73833/
Поделиться

Другие записи

Konyaev Yu.A., Gichev T.R.
Известия высших учебных заведений. Математика. Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет".