A generalization of the A. Vanderbauwhede variational principle

Let (X, Y,langle , ,rangle) be a dual pair of vector spaces and let B be a linear operator in X. We say that an operator Fcolon Xrightarrow Y is B-potential on an open set Msubset X with respect to a closed vector subspace X_0subset X if there exists a Gateaux-differentiable functional fcolon Mrightarrow bold R such that f'(x)h = langle F(x), Bh rangle for all xin M and hin X_0. The author presents conditions under which the operator F is B-potential and, consequently, solutions of the equation F(x)=0 correspond to critical points of f. Several special cases are discussed. The theorems presented generalize results of A. Vanderbauwhede and of I. Horová.

Авторы
Filippov V.M.
Редакторы
Urbanski Paweł
Номер выпуска
no.~4
Язык
Английский, Русский
Статус
Опубликовано
Год
1994
Цитировать
Поделиться

Другие записи