The maximum principle for the equation of the continuity of a compressible medium

From the text (translated from the Russian): "Two-sided estimates for the density rho (x,t) in terms of the initial state rho _0(x) and the flow v(x,t), having the character of a maximum principle, are useful when solving initial-boundary value problems of the dynamics of a compressible continuum. For a bounded domain Omega subset {bf R}^n, ngeq 2, we consider both classical and generalized solutions of the problem (1) partial rho /partial t+{rm div}(rho v)=0, xin Omega , t>0, (2) rho vert _{t=0}=rho _0(x), (v,nu )vert _{partial Omega }=0, for a given flow v(x,t) with a condition for the nonpenetration of partial Omega , where nu is the unit normal to partial Omega . We present conditions on the flow v(x,t), sufficient for a maximum principle to hold, whose accuracy we illustrate with examples of flows for which the maximum principle makes no sense, namely: either the density rho (x,t) vanishes (i.e., an expanding bubble forms in the continuum) or a generalized solution of problem (1), (2) does not even exist."

Авторы
Maslennikova V.N. , Bogovskiĭ M.E.
Журнал
Номер выпуска
no.~3
Язык
Английский, Русский
Статус
Опубликовано
Год
1994
Цитировать
Поделиться

Другие записи

Maslennikova V.N., Bogovskiĭ M.E., Zeytounian Radyadour Kh.
Математическое моделирование. Федеральное государственное бюджетное учреждение "Российская академия наук". Том 6. 1994. С. 26-32