Estimates for the norms of integral and discrete operators of Hardy type on cones of quasimonotone functions

The author claims a number of results concerning boundedness of Hardy-type operators such as (int_{0}^{t}fsp r,dmu)^{1/r} or (int_{t}^{infty}fsp r,dmu)^{1/r}, t>0, in quite a general setting on cones of functions with certain monotonicity properties; namely, the cones Omega_k of functions fgeq0 such that f/k is decreasing and Omega^{m} of functions fgeq0 such that f/m is increasing, where k,m are fixed functions on (0,infty). The results generalize earlier work of the author. Discrete versions are treated, too. Proofs are not included.

Авторы
Golʹdman M.L.
Редакторы
Pick Luboš
Журнал
Номер выпуска
6
Язык
Русский
Страницы
733-738
Статус
Опубликовано
Номер
377
Том
377
Год
2001
Цитировать
Поделиться

Другие записи