Fluxbrane and S-brane solutions with polynomials related to rank-2 Lie algebras

Summary: "Composite fluxbrane and S-brane solutions for a wide class of intersection rules are considered. These solutions are defined on a product manifold R_asttimes M_1timesdotstimes M_n which contains n Ricci-flat spaces M_1,dots,M_n with 1-dimensional factor spaces R_ast and M_1. They are determined up to a set of functions obeying non-linear differential equations equivalent to Toda-type equations with certain boundary conditions imposed. Exact solutions corresponding to configurations with two branes and intersections related to simple Lie algebras C_2 and G_2 are obtained. In these cases, the functions H_s(z), s=1,2, are polynomials of degrees (3,4) and (6,10), respectively, in agreement with a conjecture put forward previously in [V. D. Ivashchuk, Classical Quantum Gravity {bf 19} (2002), no.~11, 3033--3047; [msn] MR1911324 (2004d:83073) [/msn]]. The S-brane solutions under consideration, for special choices of the parameters, may describe an accelerating expansion of our 3-dimensional space and a small enough variation of the effective gravitational constant."

Авторы
Goncharenko I.S. , Ivashchuk V.D. , Melnikov V.N.
Номер выпуска
4
Язык
Английский, Русский
Страницы
262-266
Статус
Опубликовано
Номер
13
Том
13
Год
2007
Цитировать
Поделиться

Другие записи

Avakov E.R., Arutyunov A.V., Izmailov A.F., Venets Vladimir I.
Журнал вычислительной математики и математической физики. Федеральное государственное бюджетное учреждение "Российская академия наук". 2004.