Necessary conditions for an extremum for 2-regular problems

The paper deals with the problem of minimizing a real-valued smooth function fcolon X to Bbb R over the set D={x in X,|,F(x) in Q}, where Fcolon X to Y is a smooth mapping, X and Y are Banach spaces, and Q is a closed convex set of Y. The authors say that the mapping Fcolon X to Y is 2-regular at a point overline{x} with respect to the set Q in a direction h in X if 0 in {rm int}(F(overline{x}) + {rm Im}F'(overline{x})+F"(overline{x})[h,,(F'(overline{x}))^{-1}(Q -F(overline{x}))] - Q). When h = 0 the 2-regularity coincides with the well-known Robinson regularity condition [S. M. Robinson, Math. Oper. Res. {bf 1} (1976), no.~2, 130--143; [msn] MR0430181 (55 #3188) [/msn]]. Moreover Robinson's regularity condition implies that F is 2-regular at overline{x} with respect to Q in any direction h in X (including h=0). However, the mapping F may be 2-regular at overline{x} in some nonvanishing directions h in X,,h ne 0, and not satisfy Robinson's regularity condition. The authors show that in the case when the 2-regularity condition holds one can obtain representations both for the contingent cone and for the set of second-order tangent vectors to the constraint set D at overline{x} in the terms of local approximations of the set Q and Fréchet derivatives of F. Using these representations the authors derive first- and second-order necessary conditions for local optimal solutions of the optimization problem being considered.

Авторы
Avakov E.R. , Arutyunov A.V. , Izmailov A.F.
Редакторы
Gorokhovik Valentin V.
Журнал
Номер выпуска
2
Язык
Русский
Страницы
151-154
Статус
Опубликовано
Номер
408
Том
408
Год
2006
Цитировать
Поделиться

Другие записи

Egorov A.A., Sevastʹyanov A.L., Aĭryan È.A., Lovetskiĭ K.P., Sevastʹyanov L.A., Lyalinov Mikhail Anatolievich
Математическое моделирование. Федеральное государственное бюджетное учреждение "Российская академия наук". Том 22. 2010. С. 42-54