Spectral boundary value problems for Laplace-Beltrami operator: moduli of continuity of eigenvalues under domain deformation

Let M be a compact Riemannian manifold, possibly with non-empty boundary partial M, let Cal{A} be a strongly elliptic operator with Lipschitz coefficients and consider the eigenvalue problem Cal{A} u= lambda u, quad uin ocirc{H}{}^1(Omega) on a domain Omegasubseteq M with overline{Omega}cap partial M=emptyset. par Under suitable assumptions on the domains, the authors establish the resolvent continuity of the boundary value problem with respect to domain perturbations (Theorem 4.2). As a consequence, they obtain an estimate for the moduli of continuity of the eigenvalues relative to different domains Omega_1 and Omega_2 in terms of their Hausdorff-Pompeiu distance (Theorem 4.1).

Авторы
Stepin A.M. , Tsylin I.V.
Редакторы
Setti Alberto G.
Сборник материалов конференции
Издательство
Amer. Math. Soc., Providence, RI
Язык
Английский
Страницы
275-290
Статус
Опубликовано
Год
2017
Дата создания
19.05.2021
Дата изменения
19.05.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/73585/
Поделиться

Другие записи