Jensen-type inequalities on time scales for n-convex functions

In this paper, the authors establish some lower and upper bounds for the difference in the Edmundson-Lah-Ribarič inequality in time scales calculus that holds for the class of n-convex functions by utilizing some scalar inequalities obtained via Hermite's interpolating polynomial. In addition, the authors also establish different lower and upper bounds for the difference in the Jensen inequality as a byproduct from the results of the Edmundson-Lah-Ribarič inequality. The main results are applied to obtain new converse inequalities for generalized means and power means in the time scale settings.

Авторы
Mikić Rozarija , Pečarić Josip
Редакторы
Kermausuor Seth
Номер выпуска
2
Язык
Английский
Страницы
46-67
Статус
Опубликовано
Номер
21
Том
21
Год
2018
Дата создания
19.05.2021
Дата изменения
19.05.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/73556/
Поделиться

Другие записи

Stepanov V.D., Shambilova G.È., Kazarian Kazaros
Сибирский математический журнал. Федеральное государственное бюджетное учреждение науки Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук. 2018.