Nonexistence of nonnegative entire solutions of semilinear elliptic systems

We consider the second-order semilinear elliptic system (Formula presented.) (Formula presented.) where (Formula presented.) (Formula presented.) α and β are positive constants, p and q are nonnegative continuous functions. We prove that nontrivial nonnegative entire solutions fail to exist if the functions p and q are of slow decay. © 2020 Informa UK Limited, trading as Taylor & Francis Group.

Авторы
Gladkov A. 1, 2 , Sergeenko S.3
Язык
Английский
Статус
Опубликовано
Год
2020
Организации
  • 1 Department of Mechanics and Mathematics, Belarusian State University, Minsk, Belarus
  • 2 Peoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 3 Department of Mathematics and Information Technologies, Vitebsk State University named after P.M. Masherov, Vitebsk, Belarus
Ключевые слова
31A05; 35A05; 35A08; 35J08; 35J25; entire solutions; nonexistence; Semilinear elliptic system
Дата создания
20.04.2021
Дата изменения
20.04.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/72901/
Поделиться

Другие записи

Kuznetsova E.G., Kuryleva O.M., Salomatina L.A., Kursakov S.V., Guryanova S.V., Sevastyanov V.I.
Вестник трансплантологии и искусственных органов. ФГБУ "Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова" Минздрава России.. Том 22. 2020. С. 149-155