Subdifferentials of nonconvex integral functionals in banach spaces with applications to stochastic dynamic programming

The paper concerns the investigation of nonconvex and nondifferentiable integral functionals on general Banach spaces, which may not be reflexive and/or separable. Considering two major subdifferentials of variational analysis, we derive nonsmooth versions of the Leibniz rule on subdifferentiation under the integral sign, where the integral of the subdifferential set-valued mappings generated by Lipschitzian integrands is understood in the Gelfand sense. Besides examining integration over complete measure spaces and also over those with nonatomic measures, our special attention is drawn to a stronger version of measure nonatomicity, known as saturation, to invoke the recent results of the Lyapunov convexity theorem type for the Gelfand integral of the subdifferential mappings. The main results are applied to the subdifferential study of the optimal value functions and deriving the corresponding necessary optimality conditions in nonconvex problems of stochastic dynamic programming with discrete time on the infinite horizon. © Heldermann Verlag.

Авторы
Mordukhovich B.S. 1, 2 , Sagara N.3
Издательство
Heldermann Verlag
Номер выпуска
2
Язык
Английский
Страницы
643-673
Статус
Опубликовано
Том
25
Год
2018
Организации
  • 1 Dept. of Mathematics, Wayne State University, Detroit, MI 48202, United States
  • 2 Peoples’ Friendship University of Russia, Moscow, 117198, Russian Federation
  • 3 Department of Economics, Hosei University, Tokyo, 194-0298, Japan
Ключевые слова
Gelfand integral; Generalized Leibniz formulas; Integral functionals; Lyapunov convexity theorem; Optimal value functions; Saturated measure spaces; Stochastic dynamic programming; Subdifferential mappings
Цитировать
Поделиться

Другие записи

Борисова А.С., Кургузенкова Ж.В., Никишин В.Д.
Вестник Российского университета дружбы народов. Серия: Лингвистика. Российский университет дружбы народов. Том 22. 2018. С. 448-473