Partial homogenization of the diffusion equation with a dirac-like potential

The paper is devoted to the diffusion equation, with the Dirac-like periodic potential having different structure in two parts of the domain. The problem can be homogenized in one part of the domain while the standard homogenization does not work in the other. We introduce and test numerically the method of partial homogenization, combining in one multiscale model the homogenized and discrete description. © 2020 by Begell House,.

Авторы
Mahiout L.A.1 , Panasenko G.2, 3, 4 , Volpert V. 5, 6, 7
Издательство
Begell House Inc.
Номер выпуска
5
Язык
Английский
Страницы
507-518
Статус
Опубликовано
Том
18
Год
2020
Организации
  • 1 Laboratoire d’équations aux dérivées partielles non linéaires et histoire des mathématiques, École Normale Supérieure, B.P. 92, Vieux Kouba, Algiers, 16050, Algeria
  • 2 University of Lyon, UJM-Saint-Etienne, CNRS, Institute Camille Jordan, UMR 5208 SFR MODMAD FED 4169, Saint-Etienne, 42023, France
  • 3 National Research University Moscow Power Engineering Institute, Krasnoznamennaya 14, Moscow, 111250, Russian Federation
  • 4 Institute of Applied Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko Str., 24, Vilnius, 03225, Lithuania
  • 5 Institut Camille Jordan, UMR 5585, CNRS, University Lyon 1, Villeurbanne, 69622, France
  • 6 INRIA, Université de Lyon, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 Novembre 1918, Villeurbanne Cedex, 69200, France
  • 7 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str, Moscow, 117198, Russian Federation
Ключевые слова
Diffusion equation; Dirac-like periodic potential; Partial homogenization
Дата создания
20.04.2021
Дата изменения
20.04.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/72847/
Поделиться

Другие записи

Abdullaev S.P., Mirzaev K.B., Bochkov P.O., Sychev I.N., Sychev D.A.
Rational Pharmacotherapy in Cardiology. Stolichnaya Izdatelskaya Kompaniya. Том 16. 2020. С. 699-705