Global stability result for parabolic Cauchy problems

Uniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard [Lectures on Cauchy's Problem in Linear Partial Differential Equations, Dover, New York, 1953], these kind of problems are known to be ill-posed and even severely ill-posed. Until now, there are only few partial results concerning the quantification of the stability of parabolic Cauchy problems. We bring in the present work an answer to this issue for smooth solutions under the minimal condition that the domain is Lipschitz. © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.

Авторы
Choulli M.1 , Yamamoto M. 2, 3, 4
Издательство
Walter de Gruyter GmbH
Язык
Английский
Статус
Опубликовано
Год
2020
Организации
  • 1 Université de Lorraine, 34 cours Léopold, Nancy cedex, 54052, France
  • 2 Department of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo, 153, Japan
  • 3 Academy of Romanian Scientists, Splaiul Independentei Street, no 54, Bucharest, 050094, Romania
  • 4 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
Carleman inequality; Hardy inequality; logarithmic stability; Parabolic Cauchy problems
Цитировать
Поделиться

Другие записи

Gins M.S., Gins V.K., Motyleva S.M., Kulikov I.M., Medvedev S.M., Pivovarov V.F.
Сельскохозяйственная биология. Редакция журнала "Сельскохозяйственная биология". Том 55. 2020. С. 920-931