Dynamical systems approach to outlier robust deep neural networks for regression

We study the dynamics and equilibria induced by training an artificial neural network for regression based on the gradient conjugate prior (GCP) updates. We show that contaminating the training data set by outliers leads to bifurcation of a stable equilibrium from infinity. Furthermore, using the outputs of the GCP network at the equilibrium, we derive an explicit formula for correcting the learned variance of the marginal distribution and removing the bias caused by outliers in the training set. Assuming a Gaussian (input-dependent) ground truth distribution contaminated with a proportion ϵ of outliers, we show that the fitted mean is in a ce 1/ϵ -neighborhood of the ground truth mean and the corrected variance is in a b\ϵ -neighborhood of the ground truth variance, whereas the uncorrected variance of the marginal distribution can even be infinite. We explicitly find b as a function of the output of the GCP network, without a priori knowledge of the outliers (possibly input-dependent) distribution. Experiments with synthetic and real-world data sets indicate that the GCP network fitted with a standard optimizer outperforms other robust methods for regression. © 2020 Society for Industrial and Applied Mathematics.

Авторы
Gurevich P. 1, 2 , Stuke H.3
Издательство
Society for Industrial and Applied Mathematics Publications
Номер выпуска
4
Язык
Английский
Страницы
2567-2593
Статус
Опубликовано
Том
19
Год
2020
Организации
  • 1 Institute of Mathematics I, Free University of Berlin, Arnimallee 3, Berlin, 14195, Germany
  • 2 RUDN University, Miklukho-Maklaya 6, Moscow, 117198, Russian Federation
  • 3 Free University of Berlin, Arnimallee 3, Berlin, 14195, Germany
Ключевые слова
Asymptotics; Bifurcation; Conjugate priors; Deep neural networks; Dynamical systems; Equilibria; Kullback-Leibler divergence; Latent variables; Outliers; Regression; Student's t-distribution; Uncertainty quantification
Дата создания
20.04.2021
Дата изменения
20.04.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/72825/
Поделиться

Другие записи

Abakirov M.D., Nurmukhametov R.M., Mamyrbaev S.T., Al-Bawareed O.A.
Политравма. Благотворительный фонд Центра охраны здоровья шахтеров. 2020. С. 31-40