Stability for inverse source problems by Carleman estimates

In this article, we provide a modified argument for proving stability for inverse problems of determining spatially varying functions in evolution equations by Carleman estimates. Our method does not require any cut-off procedures and therefore simplifies the existing proofs. We establish the conditional stability for inverse source problems for a hyperbolic equation and a parabolic equation, and our method is widely applicable to various evolution equations. © 2020 IOP Publishing Ltd.

Авторы
Huang X. 1 , Imanuvilov O.Y.2 , Yamamoto M. 1, 3, 4
Журнал
Издательство
Institute of Physics Publishing
Номер выпуска
12
Язык
Английский
Статус
Опубликовано
Номер
125006
Том
36
Год
2020
Организации
  • 1 Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan
  • 2 Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, United States
  • 3 Honorary Member of Academy of Romanian Scientists, Splaiul Independentei Street No 54, Bucharest, 050094, Romania
  • 4 Peoples' Friendship University of Russia (RUDN University), 6Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
Carleman estimate; Inverse source problem; Stability
Цитировать
Поделиться

Другие записи