A navier–stokes-type problem with high-order elliptic operator and applications

The existence, uniqueness and uniformly Lp estimates for solutions of a high-order abstract Navier–Stokes problem on half space are derived. The equation involves an abstract operator in a Banach space E and small parameters. Since the Banach space E is arbitrary and A is a possible linear operator, by choosing spaces E and operators A, the existence, uniqueness and Lp estimates of solutions for numerous classes of Navier–Stokes type problems are obtained. In application, the existence, uniqueness and uniformly Lp estimates for the solution of the Wentzell–Robin-type mixed problem for the Navier–Stokes equation and mixed problem for degenerate Navier–Stokes equations are established. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Авторы
Ragusa M.A. 1, 2 , Shakhmurov V.B.3, 4
Журнал
Издательство
MDPI AG
Номер выпуска
12
Язык
Английский
Страницы
1-23
Статус
Опубликовано
Номер
2256
Том
8
Год
2020
Организации
  • 1 Dipartimento di Matematica e Informatica, Universitá degli Studi di Catania, Catania, 95125, Italy
  • 2 RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
  • 3 Antalya Bilim University, Çiplakli Mah. Farabi Cad. 23 Dosemealti, Antalya, 07190, Turkey
  • 4 Linking of Research Centers, Azerbaijan State Economic University, Murtuz Mukhtarov, Baku, AZ1001, Azerbaijan
Ключевые слова
Differential equations with small parameters; Differential-operator equations; Maximal Lp regularity; Navier–Stokes equations; Semigroups of operators; Stokes systems
Цитировать
Поделиться

Другие записи