Lyapunov-type inequalities for a nonlinear fractional boundary value problem

In this paper, we obtain a Lyapunov-type and a Hartman–Wintner-type inequalities for a nonlinear fractional hybrid equation with left Riemann–Liouville and right Caputo fractional derivatives of order 1 / 2 < α≤ 1 , subject to Dirichlet boundary conditions. It is also shown that failure of the Lyapunov-type and Hartman–Wintner-type inequalities, corresponding nonlinear boundary value problem has only trivial solutions. In the case α= 1 , our results coincide with the classical Lyapunov and Hartman–Wintner inequalities, respectively. © 2020, The Royal Academy of Sciences, Madrid.

Авторы
Kassymov A.1, 2, 3 , Torebek B.T. 1, 3, 4
Издательство
Springer-Verlag Italia s.r.l.
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
15
Том
115
Год
2021
Организации
  • 1 Al–Farabi Kazakh National University, Al–Farabi Ave. 71, Almaty, 050040, Kazakhstan
  • 2 Institute of Mathematics and Mathematical Modeling, 125 Pushkin Street, Almaty, 050010, Kazakhstan
  • 3 Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium
  • 4 RUDN University, 6 Miklukho-Maklay Street, Moscow, 117198, Russian Federation
Ключевые слова
Caputo derivative; Fractional hybrid equation; Hartman–Wintner inequality; Lyapunov inequality; Riemann–Liouville derivative
Цитировать
Поделиться

Другие записи