Well-posedness for weak and strong solutions of non-homogeneous initial boundary value problems for fractional diffusion equations

We study the well-posedness for initial boundary value problems associated with time fractional diffusion equations with non-homogenous boundary and initial values. We consider both weak and strong solutions for the problems. For weak solutions, we introduce a definition of solutions which allows to prove the existence of solution to the initial boundary value problems with non-zero initial and boundary values and non-homogeneous source terms lying in some negative-order Sobolev spaces. For strong solutions, we introduce an optimal compatibility condition and prove the existence of the solutions. We introduce also some sharp conditions guaranteeing the existence of solutions with more regularity in time and space. © 2021 Diogenes Co., Sofia

Авторы
Kian Y.1 , Yamamoto M. 2, 3, 4
Издательство
Walter de Gruyter GmbH
Номер выпуска
1
Язык
Английский
Страницы
168-201
Статус
Опубликовано
Том
24
Год
2021
Организации
  • 1 Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
  • 2 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
  • 3 Academy of Romanian Scientists, Splaiul Independentei Street, No 54, Bucharest, 050094, Romania
  • 4 Peoples' Friendship University of Russia, RUDN University, 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation
Ключевые слова
Fractional diffusion equation; Initial boundary value problem; Strong solutions; Weak; Well-posedness
Цитировать
Поделиться

Другие записи