On some properties of entropy solutions of degenerate non-linear anisotropic parabolic equations

We prove existence of the largest and the smallest entropy solutions to the Cauchy problem for a nonlinear degenerate anisotropic parabolic equation. Applying this result, we establish the comparison principle in the case when at least one of the initial functions is periodic. In the case when initial function vanishes at infinity (in the sense of strong average) we prove the long time decay of an entropy solution under exact nonlinearity-diffusivity condition. © 2020 Elsevier Inc.

Авторы
Издательство
Academic Press Inc.
Язык
Английский
Страницы
139-166
Статус
Опубликовано
Том
275
Год
2021
Организации
  • 1 Novgorod State University, 41, B. St-Petersburgskaya str., Veliky Novgorod, 173003, Russian Federation
  • 2 Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
Ключевые слова
Comparison principle; Conservation laws; Decay property; Entropy solutions; Nonlinear parabolic equations; Nonlinearity-diffusivity condition
Дата создания
20.04.2021
Дата изменения
20.04.2021
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/72107/
Поделиться

Другие записи