Criterion for the functional dissipativity of second order differential operators with complex coefficients

In the present paper we consider the Dirichlet problem for the second order differential operator E=∇(A∇), where A is a matrix with complex valued L∞ entries. We introduce the concept of dissipativity of E with respect to a given function φ:R+→R+. Under the assumption that the ImA is symmetric, we prove that the condition |sφ′(s)||〈ImA(x)ξ,ξ〉|⩽2φ(s)[sφ(s)]′〈ReA(x)ξ,ξ〉 (for almost every x∈Ω⊂RN and for any s>0, ξ∈RN) is necessary and sufficient for the functional dissipativity of E. © 2020 Elsevier Ltd

Авторы
Cialdea A.1 , Maz'ya V. 2, 3
Издательство
Elsevier Ltd
Язык
Английский
Статус
Опубликовано
Номер
112215
Том
206
Год
2021
Организации
  • 1 Department of Mathematics, Computer Sciences and Economics, University of Basilicata, V.le dell'Ateneo Lucano, 10, Potenza, 85100, Italy
  • 2 Department of Mathematics, Linköping University, Linköping, SE-581 83, Sweden
  • 3 RUDN University, 6 Miklukho-Maklay St, Moscow, 117198, Russian Federation
Ключевые слова
Functional dissipativity; Second order differential operator with complex coefficients
Цитировать
Поделиться

Другие записи