Scalar Fields in Multidimensional Gravity. No-Hair and Other No-Go Theorems

Global properties of static, spherically symmetric configurations with scalar fields of sigma-model type with arbitrary potentials are studied in D dimensions, including models where the space-time contains multiple internal factor spaces. The latter are assumed to be Einstein spaces, not necessarily Ricci-flat, and the potential V includes a contribution from their curvatures. The following results generalize those known in four dimensions: (A) a no-hair theorem on the nonexistence, in case V ≥ 0, of asymptotically flat black holes with varying scalar fields or moduli fields outside the event horizon; (B) nonexistence of particlelike solutions in field models with V ≥ 0; (C) nonexistence of wormhole solutions under very general conditions; (D) a restriction on possible global causal structures (represented by Carter-Penrose diagrams). The list of structures in all models under consideration is the same as is known for vacuum with a cosmological constant in general relativity: Minkowski (or AdS), Schwarzschild, de Sitter and Schwarzschild - de Sitter, and horizons which bound a static region are always simple. The results are applicable to various Kaluza-Klein, supergravity and stringy models with multiple dilaton and moduli fields.

Авторы
Bronnikov K.A. 1, 2 , Fadeev S.B.1 , Michtchenko A.V.3
Номер выпуска
4
Язык
Английский
Страницы
505-525
Статус
Опубликовано
Том
35
Год
2003
Организации
  • 1 VNIIMS, 3-1 M. Ulyanovoy St., Moscow 117313, Russian Federation
  • 2 Inst. of Gravitation and Cosmology, PFUR, 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
  • 3 SEPI-ESIME, IPN, Zacatenco, Mexico, D.F., CP07738, Mexico
Ключевые слова
Black holes; Multidimensional gravity; Particlelike solutions; Wormholes
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/71/
Поделиться

Другие записи