Initial–boundary value problems for Fuss-Winkler-Zimmermann and Swift–hohenberg nonlinear equations of 4th order

This paper presents results of the investigation of bifurcations of stationary solutions of the Swift–Hohenberg equation and dynamic descent to the points of minimal values of the functional of energy for this equation, obtained with the use of the modification of the Lyapunov–Schmidt variation method and some methods from the theory of singularities of smooth functions. Nonstationary case is investigated by the construction of paths of descent along the trajectories of the infinite-dimensional SH dynamical system from arbitrary initial states to points of the minimum energy. © 2018, Drustvo Matematicara Srbije. All rights reserved.

Авторы
Журнал
Издательство
Drustvo Matematicara Srbije
Номер выпуска
1
Язык
Английский
Страницы
26-39
Статус
Опубликовано
Том
70
Год
2018
Организации
  • 1 Voronezh State University, Universitetskaya pl. 1, Voronezh, 394018, Russian Federation
  • 2 RUDN University, 6 Miklukho-Maklay st, Moscow, 117198, Russian Federation
Ключевые слова
Bifurcation analysis; Hohenberg equation; Lyapunov; Schmidt variation method; Swift
Цитировать
Поделиться

Другие записи