On Singular Points of Equations of Mechanics

A system of ordinary differential equations whose right-hand side has no limit at some singular point is considered. This situation is typical of mechanical systems with Coulomb friction in a neighborhood of equilibrium. The existence and uniqueness of solutions to the Cauchy problem is analyzed. A key property is that the phase curve reaches the singular point in a finite time. It is shown that the subsequent dynamics depends on the extension of the vector field to the singular point according to the physical interpretation of the problem: systems coinciding at all point, except for the singular one, can have different solutions. Uniqueness conditions are discussed. © 2018, Pleiades Publishing, Ltd.

Авторы
Журнал
Номер выпуска
2
Язык
Английский
Страницы
167-169
Статус
Опубликовано
Том
97
Год
2018
Организации
  • 1 Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast 141700, Russian Federation
  • 2 RUDN University, Moscow, 117198, Russian Federation
Дата создания
19.10.2018
Дата изменения
19.10.2018
Постоянная ссылка
https://repository.rudn.ru/ru/records/article/record/6785/
Поделиться

Другие записи